Transcription factor regulation of eQTL activity across individuals and tissues

Author:

Flynn Elise D.ORCID,Tsu Athena L.ORCID,Kasela Silva,Kim-Hellmuth SarahORCID,Aguet FrancoisORCID,Ardlie Kristin G.ORCID,Bussemaker Harmen J.ORCID,Mohammadi Pejman,Lappalainen TuuliORCID

Abstract

Tens of thousands of genetic variants associated with gene expression (cis-eQTLs) have been discovered in the human population. These eQTLs are active in various tissues and contexts, but the molecular mechanisms of eQTL variability are poorly understood, hindering our understanding of genetic regulation across biological contexts. Since many eQTLs are believed to act by altering transcription factor (TF) binding affinity, we hypothesized that analyzing eQTL effect size as a function of TF level may allow discovery of mechanisms of eQTL variability. Using GTEx Consortium eQTL data from 49 tissues, we analyzed the interaction between eQTL effect size and TF level across tissues and across individuals within specific tissues and generated a list of 10,098 TF-eQTL interactions across 2,136 genes that are supported by at least two lines of evidence. These TF-eQTLs were enriched for various TF binding measures, supporting with orthogonal evidence that these eQTLs are regulated by the implicated TFs. We also found that our TF-eQTLs tend to overlap genes with gene-by-environment regulatory effects and to colocalize with GWAS loci, implying that our approach can help to elucidate mechanisms of context-specificity and trait associations. Finally, we highlight an interesting example of IKZF1 TF regulation of an APBB1IP gene eQTL that colocalizes with a GWAS signal for blood cell traits. Together, our findings provide candidate TF mechanisms for a large number of eQTLs and offer a generalizable approach for researchers to discover TF regulators of genetic variant effects in additional QTL datasets.

Funder

national human genome research institute

national institute of mental health

irving medical center, columbia university

national heart, lung, and blood institute

h2020 marie skłodowska-curie actions

helmholtz-gemeinschaft

national institute of general medical sciences

national center for advancing translational sciences

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans.;GTEx Consortium;Science,2015

2. Dissecting the regulatory architecture of gene expression QTLs;DJ Gaffney;Genome Biol,2012

3. Coordinated Effects of Sequence Variation on DNA Binding, Chromatin Structure, and Transcription.;H Kilpinen;Science,2013

4. Genetic effects on gene expression across human tissues;GTEx Consortium;Nature Publishing Group,2017

5. The GTEx Consortium atlas of genetic regulatory effects across human tissues;GTEx Consortium;Science,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3