Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila

Author:

Zhang Bei,Ding ZhanORCID,Li Liang,Xie Ling-Kun,Fan Yu-Jie,Xu Yong-ZhenORCID

Abstract

SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and–H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system.

Funder

NSFC

Science and Technology Department of Hubei Province, China

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Reference90 articles.

1. Mechanistic insights into precursor messenger RNA splicing by the spliceosome;Y Shi;Nat Rev Mol Cell Biol,2017

2. Spliceosome structure and function;CL Will;Cold Spring Harb Perspect Biol,2011

3. Splicing factor mutations and cancer;K Yoshida;Wiley Interdiscip Rev RNA,2014

4. Splicing Factor Mutations in Cancer;R Bejar;Adv Exp Med Biol,2016

5. Misregulation of pre-mRNA alternative splicing in cancer;J Zhang;Cancer Discov,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3