Learning from data to predict future symptoms of oncology patients
Author:
Funder
National Cancer Institute
FP7 Ideas: European Research Council
Horizon 2020
Publisher
Public Library of Science (PLoS)
Subject
Multidisciplinary
Reference51 articles.
1. Patient factors and quality of life outcomes differ among four subgroups of oncology patients based on symptom occurrence;GL Astrup;Acta Oncologica,2017
2. The symptom phenotype of oncology outpatients remains relatively stable from prior to through 1 week following chemotherapy;C Miaskowski;European journal of cancer care,2017
3. Latent class analysis reveals distinct subgroups of patients based on symptom occurrence and demographic and clinical characteristics;C Miaskowski;Journal of pain and symptom management,2015
4. Depressive Spectrum Disorders in Cancer: Diagnostic Issues and Intervention. A Critical Review;R Caruso;Current Psychiatry Reports,2017
5. Differences in depression, anxiety, and quality of life between women with and without breast pain prior to breast cancer surgery;M Kyranou;European Journal of Oncology Nursing,2013
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Patients’ and Clinicians’ Perceptions of the Clinical Utility of Predictive Risk Models for Chemotherapy-Related Symptom Management: Qualitative Exploration Using Focus Groups and Interviews;Journal of Medical Internet Research;2024-06-20
2. Machine Learning Approaches to Predict Symptoms in People With Cancer: Systematic Review;JMIR Cancer;2024-03-19
3. Prediction of Cancer Symptom Trajectory Using Longitudinal Electronic Health Record Data and Long Short-Term Memory Neural Network;JCO Clinical Cancer Informatics;2024-03
4. Predicting Depression Risk in Patients With Cancer Using Multimodal Data: Algorithm Development Study;JMIR Medical Informatics;2024-01-18
5. Supporting data driven translational patient‐centered care using network analysis to visualize symptom distress in children with serious illness;Journal for Specialists in Pediatric Nursing;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3