Spikebench: An open benchmark for spike train time-series classification

Author:

Lazarevich IvanORCID,Prokin IlyaORCID,Gutkin Boris,Kazantsev Victor

Abstract

Modern well-performing approaches to neural decoding are based on machine learning models such as decision tree ensembles and deep neural networks. The wide range of algorithms that can be utilized to learn from neural spike trains, which are essentially time-series data, results in the need for diverse and challenging benchmarks for neural decoding, similar to the ones in the fields of computer vision and natural language processing. In this work, we propose a spike train classification benchmark, based on open-access neural activity datasets and consisting of several learning tasks such as stimulus type classification, animal’s behavioral state prediction, and neuron type identification. We demonstrate that an approach based on hand-crafted time-series feature engineering establishes a strong baseline performing on par with state-of-the-art deep learning-based models for neural decoding. We release the code allowing to reproduce the reported results.

Funder

HSE Basic Research Program

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference41 articles.

1. Suite2p: beyond 10,000 neurons with standard two-photon microscopy;M Pachitariu;Biorxiv,2016

2. Tsai D, John E, Chari T, Yuste R, Shepard K. High-channel-count, high-density microelectrode array for closed-loop investigation of neuronal networks. In: Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. IEEE; 2015. p. 7510–7513.

3. Challenges and opportunities for large-scale electrophysiology with Neuropixels probes;NA Steinmetz;Current opinion in neurobiology,2018

4. Crcns. org: a repository of high-quality data sets and tools for computational neuroscience;JL Teeters;BMC Neuroscience,2009

5. Glaser JI, Chowdhury RH, Perich MG, Miller LE, Kording KP. Machine learning for neural decoding. arXiv preprint arXiv:170800909. 2017;.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3