Sampling effects and measurement overlap can bias the inference of neuronal avalanches

Author:

Neto Joao PinheiroORCID,Spitzner F. PaulORCID,Priesemann ViolaORCID

Abstract

To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.

Funder

Max-Planck-Gesellschaft

Brazilian National Council for Scientific and Technological Development

German Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference73 articles.

1. Neuronal Avalanches in Neocortical Circuits;JM Beggs;Journal of Neuroscience,2003

2. Dunkelmann S, Radons G. Neural Networsk and Abelian Sandpile Models of Self-Organized Criticality. In: Marinaro M, Morasso PG, editors. Proceedings of International Conference Artificial Neural Networks. Springer-Verlag; 1994. p. 867–870.

3. The criticality hypothesis: how local cortical networks might optimize information processing;JM Beggs;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,2008

4. Colloquium: Criticality and dynamical scaling in living systems;MA Muñoz;Reviews of Modern Physics,2018

5. Criticality in the brain: A synthesis of neurobiology, models and cognition;L Cocchi;Progress in Neurobiology,2017

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3