Mixed mechanism of conformational selection and induced fit as a molecular recognition process in the calreticulin family of proteins

Author:

Mamidi Ashalatha SreshtyORCID,Surolia AvadheshaORCID

Abstract

The fundamental question on the mechanism of molecular recognition during ligand binding has attracted a lot of scientific scrutiny. The two competing theories of ligand binding–“induced fit” and “conformational selection” have been proposed to explain biomolecular recognition. Since exploring a family of proteins with similar structural architectures and conserved functional roles can provide valuable insight into the significance of molecular structure and function, we performed molecular dynamics simulations on the calreticulin family of proteins, which specifically recognize monoglucosylated N-glycan during the protein folding process. Atomistic simulations of lectins in free and bound forms demonstrated that they exist in several conformations spanning from favorable to unfavorable for glycan binding. Our analysis was confined to the carbohydrate recognition domain (CRD) of these lectins to demonstrate the degree of conservation in protein sequence and structure and relate them with their function. Furthermore, we computed the lectin-glycan binding affinity using the mmPBSA approach to identify the most favorable lectin conformation for glycan binding and compared the molecular interaction fields in terms of noncovalent bond interactions. We also demonstrated the involvement of Tyr and Trp residues in the CRD with the non-reducing end glucose and central mannose residues, which contribute to some of the specific interactions. Furthermore, we analyzed the conformational changes in the CRD through SASA, RMSFs and protein surface topography mapping of electrostatic and hydrophobic potentials. Our findings demonstrate a hybrid mechanism of molecular recognition, initially driven by conformational selection followed by glycan-induced fluctuations in the key residues to strengthen the glycan binding interactions.

Funder

Science and Engineering Research Board

Department of Biotechnology

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference61 articles.

1. Molecular recognition and ligand association;R Baron;Annu Rev Phys Chem,2013

2. Molecular recognition in chemical and biological systems;E Persch;Angew Chem Int Ed Engl,2015

3. Glycans in drug discovery;P Valverde;Med ChemComm

4. Folding of newly translated proteins in vivo: the role of molecular chaperones;J. Frydman;Annu Rev Biochem,2001

5. Molecular chaperones and protein quality control;B Bukau;Cell,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3