What constrains food webs? A maximum entropy framework for predicting their structure with minimal biases
-
Published:2023-09-05
Issue:9
Volume:19
Page:e1011458
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Banville FrancisORCID,
Gravel Dominique,
Poisot Timothée
Abstract
Food webs are complex ecological networks whose structure is both ecologically and statistically constrained, with many network properties being correlated with each other. Despite the recognition of these invariable relationships in food webs, the use of the principle of maximum entropy (MaxEnt) in network ecology is still rare. This is surprising considering that MaxEnt is a statistical tool precisely designed for understanding and predicting many types of constrained systems. This principle asserts that the least-biased probability distribution of a system’s property, constrained by prior knowledge about that system, is the one with maximum information entropy. MaxEnt has been proven useful in many ecological modeling problems, but its application in food webs and other ecological networks is limited. Here we show how MaxEnt can be used to derive many food-web properties both analytically and heuristically. First, we show how the joint degree distribution (the joint probability distribution of the numbers of prey and predators for each species in the network) can be derived analytically using the number of species and the number of interactions in food webs. Second, we present a heuristic and flexible approach of finding a network’s adjacency matrix (the network’s representation in matrix format) based on simulated annealing and SVD entropy. We built two heuristic models using the connectance and the joint degree sequence as statistical constraints, respectively. We compared both models’ predictions against corresponding null and neutral models commonly used in network ecology using open access data of terrestrial and aquatic food webs sampled globally (N = 257). We found that the heuristic model constrained by the joint degree sequence was a good predictor of many measures of food-web structure, especially the nestedness and motifs distribution. Specifically, our results suggest that the structure of terrestrial and aquatic food webs is mainly driven by their joint degree distribution.
Funder
Institut de Valorisation des Données
Computational Biodiversity Science and Services program
Canadian Institute for Ecology & Evolution
Courtois Foundation
Natural Sciences and Engineering Research Council of Canada
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference57 articles.
1. Analysing Ecological Networks of Species Interactions;E Delmas;Biological Reviews,2019
2. The Functional Consequences of Mutualistic Network Architecture;JM Gómez;PLOS ONE,2011
3. Network Structure and Biodiversity Loss in Food Webs: Robustness Increases with Connectance;JA Dunne;Ecology Letters,2002
4. The Nested Assembly of Plant-Animal Mutualistic Networks;J Bascompte;Proceedings of the National Academy of Sciences of the United States of America,2003
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献