Cross-fitted instrument: A blueprint for one-sample Mendelian randomization

Author:

Denault William R. P.ORCID,Bohlin JonORCID,Page Christian M.ORCID,Burgess StephenORCID,Jugessur Astanand

Abstract

Bias from weak instruments may undermine the ability to estimate causal effects in instrumental variable regression (IVR). We present here a new approach to handling weak instrument bias through the application of a new type of instrumental variable coined ‘Cross-Fitted Instrument’ (CFI). CFI splits the data at random and estimates the impact of the instrument on the exposure in each partition. These estimates are then used to perform an IVR on each partition. We adapt CFI to the Mendelian randomization (MR) setting and term this adaptation ‘Cross-Fitting for Mendelian Randomization’ (CFMR). We show that, even when using weak instruments, CFMR is, at worst, biased towards the null, which makes it a conservative one-sample MR approach. In particular, CFMR remains conservative even when the two samples used to perform the MR analysis completely overlap, whereas current state-of-the-art approaches (e.g., MR RAPS) display substantial bias in this setting. Another major advantage of CFMR lies in its use of all of the available data to select genetic instruments, which maximizes statistical power, as opposed to traditional two-sample MR where only part of the data is used to select the instrument. Consequently, CFMR is able to enhance statistical power in consortia-led meta-analyses by enabling a conservative one-sample MR to be performed in each cohort prior to a meta-analysis of the results across all the cohorts. In addition, CFMR enables a cross-ethnic MR analysis by accounting for ethnic heterogeneity, which is particularly important in meta-analyses where the participating cohorts may have different ethnicities. To our knowledge, none of the current MR approaches can account for such heterogeneity. Finally, CFMR enables the application of MR to exposures that are either rare or difficult to measure, which would normally preclude their analysis in the regular two-sample MR setting.

Funder

Norges Forskningsråd

Wellcome Trust and the Royal Society

United Kingdom Research and Innovation Medical Research Council

National Institute for Health Research Cambridge Biomedical Research Centre

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. Pierce and Burgess S. Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators;L Brandon;American Journal of Epidemiology

2. Two-Sample Instrumental Variables Estimators;Atsushi Inoue;The Review of Economics and Statistics,2010

3. Commentary: Two-sample Mendelian randomization: opportunities and challenges;Debbie A Lawlor;International Journal of Epidemiology,2016

4. A comparison of bias approximations for the two-stage least squares (2SLS) estimator;Maurice J. G. Bun;Economics Letters,2011

5. Bias due to participant overlap in two-sample Mendelian randomization;Burgess Stephen;Genetic Epidemiology,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3