MVST: Identifying spatial domains of spatial transcriptomes from multiple views using multi-view graph convolutional networks

Author:

Duan Hao,Zhang Qingchen,Cui Feifei,Zou QuanORCID,Zhang ZilongORCID

Abstract

Spatial transcriptome technology can parse transcriptomic data at the spatial level to detect high-throughput gene expression and preserve information regarding the spatial structure of tissues. Identifying spatial domains, that is identifying regions with similarities in gene expression and histology, is the most basic and critical aspect of spatial transcriptome data analysis. Most current methods identify spatial domains only through a single view, which may obscure certain important information and thus fail to make full use of the information embedded in spatial transcriptome data. Therefore, we propose an unsupervised clustering framework based on multiview graph convolutional networks (MVST) to achieve accurate spatial domain recognition by the learning graph embedding features of neighborhood graphs constructed from gene expression information, spatial location information, and histopathological image information through multiview graph convolutional networks. By exploring spatial transcriptomes from multiple views, MVST enables data from all parts of the spatial transcriptome to be comprehensively and fully utilized to obtain more accurate spatial expression patterns. We verified the effectiveness of MVST on real spatial transcriptome datasets, the robustness of MVST on some simulated datasets, and the reasonableness of the framework structure of MVST in ablation experiments, and from the experimental results, it is clear that MVST can achieve a more accurate spatial domain identification compared with the current more advanced methods. In conclusion, MVST is a powerful tool for spatial transcriptome research with improved spatial domain recognition.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3