Tuning social interactions’ strength drives collective response to light intensity in schooling fish

Author:

Xue Tingting,Li XuORCID,Lin GuoZheng,Escobedo Ramón,Han Zhangang,Chen Xiaosong,Sire Clément,Theraulaz GuyORCID

Abstract

Schooling fish heavily rely on visual cues to interact with neighbors and avoid obstacles. The availability of sensory information is influenced by environmental conditions and changes in the physical environment that can alter the sensory environment of the fish, which in turn affects individual and group movements. In this study, we combine experiments and data-driven modeling to investigate the impact of varying levels of light intensity on social interactions and collective behavior in rummy-nose tetra fish. The trajectories of single fish and groups of fish swimming in a tank under different lighting conditions were analyzed to quantify their movements and spatial distribution. Interaction functions between two individuals and the fish interaction with the tank wall were reconstructed and modeled for each light condition. Our results demonstrate that light intensity strongly modulates social interactions between fish and their reactions to obstacles, which then impact collective motion patterns that emerge at the group level.

Funder

China Scholarship Council

National Natural Science Foundation of China

Agence Nationale de la Recherche

Indo-French Centre for the Promotion of Advanced Research

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference67 articles.

1. Collective Animal Behavior

2. The principles of collective animal behaviour;DJT Sumpter;Phil Trans R Soc B,2006

3. The adaptive significance of schooling as an anti-predator defence in fish;AE Magurran;Ann Zool Fenn,1990

4. Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators;SRJ Neill;J Zool,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3