STREAK: A supervised cell surface receptor abundance estimation strategy for single cell RNA-sequencing data using feature selection and thresholded gene set scoring

Author:

Javaid AzkaORCID,Frost Hildreth Robert

Abstract

The accurate estimation of cell surface receptor abundance for single cell transcriptomics data is important for the tasks of cell type and phenotype categorization and cell-cell interaction quantification. We previously developed an unsupervised receptor abundance estimation technique named SPECK (Surface Protein abundance Estimation using CKmeans-based clustered thresholding) to address the challenges associated with accurate abundance estimation. In that paper, we concluded that SPECK results in improved concordance with Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) data relative to comparative unsupervised abundance estimation techniques using only single-cell RNA-sequencing (scRNA-seq) data. In this paper, we outline a new supervised receptor abundance estimation method called STREAK (gene Set Testing-based Receptor abundance Estimation using Adjusted distances and cKmeans thresholding) that leverages associations learned from joint scRNA-seq/CITE-seq training data and a thresholded gene set scoring mechanism to estimate receptor abundance for scRNA-seq target data. We evaluate STREAK relative to both unsupervised and supervised receptor abundance estimation techniques using two evaluation approaches on six joint scRNA-seq/CITE-seq datasets that represent four human and mouse tissue types. We conclude that STREAK outperforms other abundance estimation strategies and provides a more biologically interpretable and transparent statistical model.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3