Improved protein complex prediction with AlphaFold-multimer by denoising the MSA profile

Author:

Bryant PatrickORCID,Noé Frank

Abstract

Structure prediction of protein complexes has improved significantly with AlphaFold2 and AlphaFold-multimer (AFM), but only 60% of dimers are accurately predicted. Here, we learn a bias to the MSA representation that improves the predictions by performing gradient descent through the AFM network. We demonstrate the performance on seven difficult targets from CASP15 and increase the average MMscore to 0.76 compared to 0.63 with AFM. We evaluate the procedure on 487 protein complexes where AFM fails and obtain an increased success rate (MMscore>0.75) of 33% on these difficult targets. Our protocol, AFProfile, provides a way to direct predictions towards a defined target function guided by the MSA. We expect gradient descent over the MSA to be useful for different tasks.

Funder

FP7 Ideas: European Research Council

Berlin Mathematics Research Center MATH+

Deutsche Forschungsgemeinschaft

SciLifeLab & Wallenberg Data Driven Life Science Program

Zentrum für Informationsdienste und Hochleistungsrechnen, Technische Universität Dresden

National Supercomputer Centre, Linköpings Universitet

Publisher

Public Library of Science (PLoS)

Reference30 articles.

1. Highly accurate protein structure prediction with AlphaFold;J Jumper;Nature,2021

2. MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming;S Mukherjee;Nucleic Acids Res,2009

3. Evaluation of AlphaFold-Multimer prediction on multi-chain protein complexes;W Zhu;Bioinformatics,2023

4. Improved prediction of protein-protein interactions using AlphaFold2.;P Bryant;Nat Commun,2022

5. Towards a structurally resolved human protein interaction network;DF Burke;Nat Struct Mol Biol,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3