Error-independent effect of sensory uncertainty on motor learning when both feedforward and feedback control processes are engaged

Author:

Hewitson Christopher L.,Kaplan David M.ORCID,Crossley Matthew J.ORCID

Abstract

Integrating sensory information during movement and adapting motor plans over successive movements are both essential for accurate, flexible motor behaviour. When an ongoing movement is off target, feedback control mechanisms update the descending motor commands to counter the sensed error. Over longer timescales, errors induce adaptation in feedforward planning so that future movements become more accurate and require less online adjustment from feedback control processes. Both the degree to which sensory feedback is integrated into an ongoing movement and the degree to which movement errors drive adaptive changes in feedforward motor plans have been shown to scale inversely with sensory uncertainty. However, since these processes have only been studied in isolation from one another, little is known about how they are influenced by sensory uncertainty in real-world movement contexts where they co-occur. Here, we show that sensory uncertainty may impact feedforward adaptation of reaching movements differently when feedback integration is present versus when it is absent. In particular, participants gradually adjust their movements from trial-to-trial in a manner that is well characterised by a slow and consistent envelope of error reduction. Riding on top of this slow envelope, participants exhibit large and abrupt changes in their initial movement vectors that are strongly correlated with the degree of sensory uncertainty present on the previous trial. However, these abrupt changes are insensitive to the magnitude and direction of the sensed movement error. These results prompt important questions for current models of sensorimotor learning under uncertainty and open up new avenues for future exploration in the field.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Noise in the nervous system;AA Faisal;Nature Reviews Neuroscience,2008

2. Computational principles of sensorimotor control that minimize uncertainty and variability;PM Bays;The Journal of physiology,2007

3. Visual feedback control of hand movements;JA Saunders;Journal of Neuroscience,2004

4. Humans use continuous visual feedback from the hand to control both the direction and distance of pointing movements;JA Saunders;Experimental brain research,2005

5. Computational principles of movement neuroscience;DM Wolpert;Nature Neuroscience,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3