Survival analysis of pathway activity as a prognostic determinant in breast cancer

Author:

Jeuken Gustavo S.ORCID,Tobin Nicholas P.ORCID,Käll LukasORCID

Abstract

High throughput biology enables the measurements of relative concentrations of thousands of biomolecules from e.g. tissue samples. The process leaves the investigator with the problem of how to best interpret the potentially large number of differences between samples. Many activities in a cell depend on ordered reactions involving multiple biomolecules, often referred to as pathways. It hence makes sense to study differences between samples in terms of altered pathway activity, using so-called pathway analysis. Traditional pathway analysis gives significance to differences in the pathway components’ concentrations between sample groups, however, less frequently used methods for estimating individual samples’ pathway activities have been suggested. Here we demonstrate that such a method can be used for pathway-based survival analysis. Specifically, we investigate the pathway activities’ association with patients’ survival time based on the transcription profiles of the METABRIC dataset. Our implementation shows that pathway activities are better prognostic markers for survival time in METABRIC than the individual transcripts. We also demonstrate that we can regress out the effect of individual pathways on other pathways, which allows us to estimate the other pathways’ residual pathway activity on survival. Furthermore, we illustrate how one can visualize the often interdependent measures over hierarchical pathway databases using sunburst plots.

Funder

Stiftelsen för Strategisk Forskning

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3