Model design choices impact biological insight: Unpacking the broad landscape of spatial-temporal model development decisions

Author:

Yu Jessica S.ORCID,Bagheri NedaORCID

Abstract

Computational models enable scientists to understand observed dynamics, uncover rules underlying behaviors, predict experimental outcomes, and generate new hypotheses. There are countless modeling approaches that can be used to characterize biological systems, further multiplied when accounting for the variety of model design choices. Many studies focus on the impact of model parameters on model output and performance; fewer studies investigate the impact of model design choices on biological insight. Here we demonstrate why model design choices should be deliberate and intentional in context of the specific research system and question. In this study, we analyze agnostic and broadly applicable modeling choices at three levels—system, cell, and environment—within the same agent-based modeling framework to interrogate their impact on temporal, spatial, and single-cell emergent dynamics. We identify key considerations when making these modeling choices, including the (i) differences between qualitative vs. quantitative results driven by choices in system representation, (ii) impact of cell-to-cell variability choices on cell-level and temporal trends, and (iii) relationship between emergent outcomes and choices of nutrient dynamics in the environment. This generalizable investigation can help guide the choices made when developing biological models that aim to characterize spatial-temporal dynamics.

Funder

National Science Foundation

Washington Research Foundation

Publisher

Public Library of Science (PLoS)

Reference19 articles.

1. How computational models can help unlock biological systems;GW Brodland;Seminars in Cell & Developmental Biology,2015

2. Multiscale computational models of complex biological systems;J Walpole;Annual Review of Biomedical Engineering,2013

3. The strategy of model building in population biology;R Levins;American Scientist,1966

4. Trade-offs in model-building: A more target-oriented approach;J Matthewson;Studies in History and Philosophy of Science Part A,2011

5. Agent-based modeling: Methods and techniques for simulating human systems;E Bonabeau;Proceedings of the National Academy of Sciences,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3