Abstract
Recent advances in deep learning have significantly improved the ability to infer protein sequences directly from protein structures for the fix-backbone design. The methods have evolved from the early use of multi-layer perceptrons to convolutional neural networks, transformers, and graph neural networks (GNN). However, the conventional approach of constructing K-nearest-neighbors (KNN) graph for GNN has limited the utilization of edge information, which plays a critical role in network performance. Here we introduced SPIN-CGNN based on protein contact maps for nearest neighbors. Together with auxiliary edge updates and selective kernels, we found that SPIN-CGNN provided a comparable performance in refolding ability by AlphaFold2 to the current state-of-the-art techniques but a significant improvement over them in term of sequence recovery, perplexity, deviation from amino-acid compositions of native sequences, conservation of hydrophobic positions, and low complexity regions, according to the test by unseen structures, “hallucinated” structures and diffusion models. Results suggest that low complexity regions in the sequences designed by deep learning, for generated structures in particular, remain to be improved, when compared to the native sequences.
Funder
National Key Research and Development Program of China
Major Program of Shenzhen Bay Laboratory
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献