Abstract
Brain models typically focus either on low-level biological detail or on qualitative behavioral effects. In contrast, we present a biologically-plausible spiking-neuron model of associative learning and recognition that accounts for both human behavior and low-level brain activity across the whole task. Based on cognitive theories and insights from machine-learning analyses of M/EEG data, the model proceeds through five processing stages: stimulus encoding, familiarity judgement, associative retrieval, decision making, and motor response. The results matched human response times and source-localized MEG data in occipital, temporal, prefrontal, and precentral brain regions; as well as a classic fMRI effect in prefrontal cortex. This required two main conceptual advances: a basal-ganglia-thalamus action-selection system that relies on brief thalamic pulses to change the functional connectivity of the cortex, and a new unsupervised learning rule that causes very strong pattern separation in the hippocampus. The resulting model shows how low-level brain activity can result in goal-directed cognitive behavior in humans.
Funder
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics