A new method for the analysis of access period experiments, illustrated with whitefly-borne cassava mosaic begomovirus

Author:

Donnelly RuairíORCID,Gilligan Christopher A.

Abstract

Reports of low transmission efficiency, of a cassava mosaic begomovirus (CMB) in Bemisia tabaci whitefly, diminished the perceived importance of whitefly in CMB epidemics. Studies indicating synergies between B. tabaci and CMB prompt a reconsideration of this assessment. In this paper, we analysed the retention period and infectiousness of CMB-carrying B. tabaci as well as B. tabaci susceptibility to CMB. We assessed the role of low laboratory insect survival in historic reports of a 9d virus retention period. To do this, we introduced Bayesian analyses to an important class of experiment in plant pathology. We were unable to reject a null hypothesis of life-long CMB retention when we accounted for low insect survival. Our analysis confirmed low insect survival, with insects surviving on average for around three days of transfers from the original infected plant to subsequent test plants. Use of the new analysis to account for insect death may lead to re-calibration of retention periods for other important insect-borne plant pathogens. In addition, we showed that B. tabaci susceptibility to CMB is substantially higher than previously thought. We also introduced a technique for high resolution analysis of retention period, showing that B. tabaci infectiousness with CMB was increasing over the first five days of infection.

Funder

Bill and Melinda Gates Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference34 articles.

1. Estimating epidemiological parameters from experiments in vector access to host plants, the method of matching gradients;R Donnelly;PLoS computational biology,2020

2. Transmission of African cassava mosaic geminivirus by the whitefly (Bemisia tabaci);J Dubern;Tropical Science,1994

3. Sweet potato leaf curl virus: efficiency of acquisition, retention and transmission by Bemisia tabaci (Hemiptera: Aleyrodidae);A. M. Simmons;Crop Protection,2009

4. Transmission efficiency of tomato apex necrosis virus by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype B in tomato;M Barajas-Ortiz;Journal of economic entomology,2013

5. The role of the whitefly, Bemisia tabaci (Gennadius), and farmer practices in the spread of cassava brown streak ipomoviruses;M.N Maruthi;Journal of Phytopathology,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3