Tight basis cycle representatives for persistent homology of large biological data sets

Author:

Aggarwal ManuORCID,Periwal Vipul

Abstract

Persistent homology (PH) is a popular tool for topological data analysis that has found applications across diverse areas of research. It provides a rigorous method to compute robust topological features in discrete experimental observations that often contain various sources of uncertainties. Although powerful in theory, PH suffers from high computation cost that precludes its application to large data sets. Additionally, most analyses using PH are limited to computing the existence of nontrivial features. Precise localization of these features is not generally attempted because, by definition, localized representations are not unique and because of even higher computation cost. Such a precise location is a sine qua non for determining functional significance, especially in biological applications. Here, we provide a strategy and algorithms to compute tight representative boundaries around nontrivial robust features in large data sets. To showcase the efficiency of our algorithms and the precision of computed boundaries, we analyze the human genome and protein crystal structures. In the human genome, we found a surprising effect of the impairment of chromatin loop formation on loops through chromosome 13 and the sex chromosomes. We also found loops with long-range interactions between functionally related genes. In protein homologs with significantly different topology, we found voids attributable to ligand-interaction, mutation, and differences between species.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. Uncertainty Modeling and Analysis in Engineering and the Sciences

2. Chromatin loops in gene regulation;S Kadauke;Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms,2009

3. Organizational principles of 3D genome architecture;MJ Rowley;Nature Reviews Genetics,2018

4. Persistent homology analysis of brain artery trees;P Bendich;The annals of applied statistics,2016

5. Topological data analysis of zebrafish patterns;MR McGuirl;Proceedings of the National Academy of Sciences,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3