Computational analysis of 5-fluorouracil anti-tumor activity in colon cancer using a mechanistic pharmacokinetic/pharmacodynamic model

Author:

Ma ChenhuiORCID,Almasan Alex,Gurkan-Cavusoglu EvrenORCID

Abstract

5-Fluorouracil (5-FU) is a standard chemotherapeutic agent to treat solid cancers such as breast, colon, head, and neck. Computational modeling plays an essential role in predicting the outcome of chemotherapy and developing optimal dosing strategies. We developed an integrated mechanistic pharmacokinetics/pharmacodynamics (PK/PD) model examining the influence of 5-FU, as an S-phase specific double-strand break (DSB)-inducing agent, on tumor proliferation. The proposed mechanistic PK/PD model simulates the dynamics of critical intermediate components and provides the accurate tumor response prediction. The integrated model is composed of PK, cellular, and tumor growth inhibition (TGI) sub-models, quantitatively capturing the essential drug-related physiological processes. In the cellular model, thymidylate synthase (TS) inhibition, resultant deoxynucleoside triphosphate (dNTP) pool imbalance, and DSB induction are considered, as well as 5-FU incorporation into RNA and DNA. The amount of 5-FU anabolites and DSBs were modeled to drive the kinetics of the pharmacological tumor response. Model parameters were estimated by fitting to literature data. Our simulation results successfully describe the kinetics of the intermediates regulating the 5-FU cytotoxic events and the pattern of tumor suppression. The comprehensive model simulated the tumor volume change under various dose regimens, and its generalizability was attested by comparing it with literature data. The potential causes of the tumor resistance to 5-FU are also investigated through Monte Carlo analysis. The simulation of various dosage regimens helps quantify the relationship between treatment protocols and chemotherapy potency, which will lead to the development of efficacy optimization.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3