Ensemble inference of unobserved infections in networks using partial observations

Author:

Zhang RenquanORCID,Tai Jilei,Pei SenORCID

Abstract

Undetected infections fuel the dissemination of many infectious agents. However, identification of unobserved infectious individuals remains challenging due to limited observations of infections and imperfect knowledge of key transmission parameters. Here, we use an ensemble Bayesian inference method to infer unobserved infections using partial observations. The ensemble inference method can represent uncertainty in model parameters and update model states using all ensemble members collectively. We perform extensive experiments in both model-generated and real-world networks in which individuals have differential but unknown transmission rates. The ensemble method outperforms several alternative approaches for a variety of network structures and observation rates, despite that the model is mis-specified. Additionally, the computational complexity of this algorithm scales almost linearly with the number of nodes in the network and the number of observations, respectively, exhibiting the potential to apply to large-scale networks. The inference method may support decision-making under uncertainty and be adapted for use for other dynamical models in networks.

Funder

Liaoning Provincial Natural Science Foundation

Fundamental Research Funds for Central Universities

Dalian High-Level Talent Innovation Program

National Key Research and Development Program of China

Centers for Disease Control and Prevention

National Science Foundation

Council of State and Territorial Epidemiologists

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Asymptomatic Nodes in Network Epidemics using Betweenness Centrality;Anais do XXIII Workshop em Desempenho de Sistemas Computacionais e de Comunicação (WPerformance 2024);2024-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3