Genome-wide cross-cancer analysis illustrates the critical role of bimodal miRNA in patient survival and drug responses to PI3K inhibitors

Author:

Moody Laura,Xu Guanying BiancaORCID,Pan Yuan-XiangORCID,Chen HongORCID

Abstract

Heterogeneity of cancer means many tumorigenic genes are only aberrantly expressed in a subset of patients and thus follow a bimodal distribution, having two modes of expression within a single population. Traditional statistical techniques that compare sample means between cancer patients and healthy controls fail to detect bimodally expressed genes. We utilize a mixture modeling approach to identify bimodal microRNA (miRNA) across cancers, find consistent sources of heterogeneity, and identify potential oncogenic miRNA that may be used to guide personalized therapies. Pathway analysis was conducted using target genes of the bimodal miRNA to identify potential functional implications in cancer. In vivo overexpression experiments were conducted to elucidate the clinical importance of bimodal miRNA in chemotherapy treatments. In nine types of cancer, tumors consistently displayed greater bimodality than normal tissue. Specifically, in liver and lung cancers, high expression of miR-105 and miR-767 was indicative of poor prognosis. Functional pathway analysis identified target genes of miR-105 and miR-767 enriched in the phosphoinositide-3-kinase (PI3K) pathway, and analysis of over 200 cancer drugs in vitro showed that drugs targeting the same pathway had greater efficacy in cell lines with high miR-105 and miR-767 levels. Overexpression of the two miRNA facilitated response to PI3K inhibitor treatment. We demonstrate that while cancer is marked by considerable genetic heterogeneity, there is between-cancer concordance regarding the particular miRNA that are more variable. Bimodal miRNA are ideal biomarkers that can be used to stratify patients for prognosis and drug response in certain types of cancer.

Funder

USDA

Carle Foundation Hospital

University of Illinois at Urbana-Champaign

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. mtDNA Single-Nucleotide Variants Associated with Type 2 Diabetes;Current Issues in Molecular Biology;2023-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3