Abstract
Lesion inference analysis is a fundamental approach for characterizing the causal contributions of neural elements to brain function. This approach has gained new prominence through the arrival of modern perturbation techniques with unprecedented levels of spatiotemporal precision. While inferences drawn from brain perturbations are conceptually powerful, they face methodological difficulties. Particularly, they are challenged to disentangle the true causal contributions of the involved elements, since often functions arise from coalitions of distributed, interacting elements, and localized perturbations have unknown global consequences. To elucidate these limitations, we systematically and exhaustively lesioned a small artificial neural network (ANN) playing a classic arcade game. We determined the functional contributions of all nodes and links, contrasting results from sequential single-element perturbations with simultaneous perturbations of multiple elements. We found that lesioning individual elements, one at a time, produced biased results. By contrast, multi-site lesion analysis captured crucial details that were missed by single-site lesions. We conclude that even small and seemingly simple ANNs show surprising complexity that needs to be addressed by multi-lesioning for a coherent causal characterization.
Funder
Deutsche Forschungsgemeinschaft
Bernstein Network
The Human Brain Project
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献