Uncovering the organization of neural circuits with Generalized Phase Locking Analysis

Author:

Safavi Shervin,Panagiotaropoulos Theofanis I.,Kapoor Vishal,Ramirez-Villegas Juan F.,Logothetis Nikos K.,Besserve MichelORCID

Abstract

Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic “field” signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.

Funder

Max Planck Society

Bundesministerium für Bildung und Forschung

Shanghai Municipal Science and Technology Major Project

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference131 articles.

1. The Scientific Case for Brain Simulations;GT Einevoll;Neuron,2019

2. D’Angelo E, Jirsa V. The quest for multiscale brain modeling. Trends in Neurosciences. 2022;.

3. Safavi S. Brain as a Complex System, harnessing systems neuroscience tools & notions for an empirical approach. PhD Thesis, Universität Tübingen; 2022. Available from: https://tobias-lib.ub.uni-tuebingen.de/xmlui/handle/10900/128071

4. Inferring Spike Trains from Local Field Potentials;MJ Rasch;J Neurophysiol,2008

5. From Neurons to Circuits: Linear Estimation of Local Field Potentials;M Rasch;J Neurosci,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3