Abstract
Brains must represent the outside world so that animals survive and thrive. In early sensory systems, neural populations have diverse receptive fields structured to detect important features in inputs, yet significant variability has been ignored in classical models of sensory neurons. We model neuronal receptive fields as random, variable samples from parameterized distributions and demonstrate this model in two sensory modalities using data from insect mechanosensors and mammalian primary visual cortex. Our approach leads to a significant theoretical connection between the foundational concepts of receptive fields and random features, a leading theory for understanding artificial neural networks. The modeled neurons perform a randomized wavelet transform on inputs, which removes high frequency noise and boosts the signal. Further, these random feature neurons enable learning from fewer training samples and with smaller networks in artificial tasks. This structured random model of receptive fields provides a unifying, mathematically tractable framework to understand sensory encodings across both spatial and temporal domains.
Funder
University of Washington, Department of Applied Mathematics
Achievement Rewards for College Scientists Foundation
National Science Foundation
Howard Hughes Medical Institute
Air Force Office of Scientific Research
Washington Research Foundation
Western Washington University
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献