Density-dependent effects are the main determinants of variation in growth dynamics between closely related bacterial strains

Author:

Hilau SabrinORCID,Katz SophiaORCID,Wasserman TanyaORCID,Hershberg Ruth,Savir YonatanORCID

Abstract

Although closely related, bacterial strains from the same species show significant diversity in their growth and death dynamics. Yet, our understanding of the relationship between the kinetic parameters that dictate these dynamics is still lacking. Here, we measured the growth and death dynamics of 11 strains of Escherichia coli originating from different hosts and show that the growth patterns are clustered into three major classes with typical growth rates, maximal fold change, and death rates. To infer the underlying phenotypic parameters that govern the dynamics, we developed a phenomenological mathematical model that accounts not only for growth rate and its dependence on resource availability, but also for death rates and density-dependent growth inhibition. We show that density-dependent growth is essential for capturing the variability in growth dynamics between the strains. Indeed, the main parameter determining the dynamics is the typical density at which they slow down their growth, rather than the maximal growth rate or death rate. Moreover, we show that the phenotypic landscape resides within a two-dimensional plane spanned by resource utilization efficiency, death rate, and density-dependent growth inhibition. In this phenotypic plane, we identify three clusters that correspond to the growth pattern classes. Overall, our results reveal the tradeoffs between growth parameters that constrain bacterial adaptation.

Funder

The Rappaport Family Institute for Research in the Medical Sciences

Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology

UOM-Israel collaboration

The Wolfson Foundation

ISF

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference39 articles.

1. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space;O Shoval;Science (1979),2012

2. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape;Y Savir;Proc Natl Acad Sci U S A,2010

3. Experimental evolution reveals hidden diversity in evolutionary pathways;PA Lind;Elife,2015

4. Availability of public goods shapes the evolution of competing metabolic strategies;H Bachmann;Proc Natl Acad Sci U S A,2013

5. Environment determines evolutionary trajectory in a constrained phenotypic space;DT Fraebel;Elife,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3