Modelling quantitative fungicide resistance and breakdown of resistant cultivars: Designing integrated disease management strategies for Septoria of winter wheat

Author:

Taylor Nick P.ORCID,Cunniffe Nik J.ORCID

Abstract

Plant pathogens respond to selection pressures exerted by disease management strategies. This can lead to fungicide resistance and/or the breakdown of disease-resistant cultivars, each of which significantly threaten food security. Both fungicide resistance and cultivar breakdown can be characterised as qualitative or quantitative. Qualitative (monogenic) resistance/breakdown involves a step change in the characteristics of the pathogen population with respect to disease control, often caused by a single genetic change. Quantitative (polygenic) resistance/breakdown instead involves multiple genetic changes, each causing a smaller shift in pathogen characteristics, leading to a gradual alteration in the effectiveness of disease control over time. Although resistance/breakdown to many fungicides/cultivars currently in use is quantitative, the overwhelming majority of modelling studies focus on the much simpler case of qualitative resistance. Further, those very few models of quantitative resistance/breakdown which do exist are not fitted to field data. Here we present a model of quantitative resistance/breakdown applied to Zymoseptoria tritici, which causes Septoria leaf blotch, the most prevalent disease of wheat worldwide. Our model is fitted to data from field trials in the UK and Denmark. For fungicide resistance, we show that the optimal disease management strategy depends on the timescale of interest. Greater numbers of fungicide applications per year lead to greater selection for resistant strains, although over short timescales this can be oset by the increased control oered by more sprays. However, over longer timescales higher yields are attained using fewer fungicide applications per year. Deployment of disease-resistant cultivars is not only a valuable disease management strategy, but also oers the secondary benefit of protecting fungicide effectiveness by delaying the development of fungicide resistance. However, disease-resistant cultivars themselves erode over time. We show how an integrated disease management strategy with frequent replacement of disease-resistant cultivars can give a large improvement in fungicide durability and yields.

Funder

Biotechnology and Biological Sciences Research Council of the United Kingdom

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3