Abstract
Antibodies and humoral memory are key components of the adaptive immune system. We consider and computationally model mechanisms by which humoral memory present at baseline might increase rather than decrease infection load; we refer to this effect as EI-HM (enhancement of infection by humoral memory). We first consider antibody dependent enhancement (ADE) in which antibody enhances the growth of the pathogen, typically a virus, and typically at intermediate ‘Goldilocks’ levels of antibody. Our ADE model reproduces ADE in vitro and enhancement of infection in vivo from passive antibody transfer. But notably the simplest implementation of our ADE model never results in EI-HM. Adding complexity, by making the cross-reactive antibody much less neutralizing than the de novo generated antibody or by including a sufficiently strong non-antibody immune response, allows for ADE-mediated EI-HM. We next consider the possibility that cross-reactive memory causes EI-HM by crowding out a possibly superior de novo immune response. We show that, even without ADE, EI-HM can occur when the cross-reactive response is both less potent and ‘directly’ (i.e. independently of infection load) suppressive with regard to the de novo response. In this case adding a non-antibody immune response to our computational model greatly reduces or completely eliminates EI-HM, which suggests that ‘crowding out’ is unlikely to cause substantial EI-HM. Hence, our results provide examples in which simple models give qualitatively opposite results compared to models with plausible complexity. Our results may be helpful in interpreting and reconciling disparate experimental findings, especially from dengue, and for vaccination.
Funder
National Heart, Lung, and Blood Institute
Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献