IDP-LM: Prediction of protein intrinsic disorder and disorder functions based on language models

Author:

Pang Yihe,Liu BinORCID

Abstract

Intrinsically disordered proteins (IDPs) and regions (IDRs) are a class of functionally important proteins and regions that lack stable three-dimensional structures under the native physiologic conditions. They participate in critical biological processes and thus are associated with the pathogenesis of many severe human diseases. Identifying the IDPs/IDRs and their functions will be helpful for a comprehensive understanding of protein structures and functions, and inform studies of rational drug design. Over the past decades, the exponential growth in the number of proteins with sequence information has deepened the gap between uncharacterized and annotated disordered sequences. Protein language models have recently demonstrated their powerful abilities to capture complex structural and functional information from the enormous quantity of unlabelled protein sequences, providing opportunities to apply protein language models to uncover the intrinsic disorders and their biological properties from the amino acid sequences. In this study, we proposed a computational predictor called IDP-LM for predicting intrinsic disorder and disorder functions by leveraging the pre-trained protein language models. IDP-LM takes the embeddings extracted from three pre-trained protein language models as the exclusive inputs, including ProtBERT, ProtT5 and a disorder specific language model (IDP-BERT). The ablation analysis shown that the IDP-BERT provided fine-grained feature representations of disorder, and the combination of three language models is the key to the performance improvement of IDP-LM. The evaluation results on independent test datasets demonstrated that the IDP-LM provided high-quality prediction results for intrinsic disorder and four common disordered functions.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3