Inferring fungal growth rates from optical density data

Author:

Hameed TaraORCID,Motsi Natasha,Bignell ElaineORCID,Tanaka Reiko J.ORCID

Abstract

Quantifying fungal growth underpins our ability to effectively treat severe fungal infections. Current methods quantify fungal growth rates from time-course morphology-specific data, such as hyphal length data. However, automated large-scale collection of such data lies beyond the scope of most clinical microbiology laboratories. In this paper, we propose a mathematical model of fungal growth to estimate morphology-specific growth rates from easy-to-collect, but indirect, optical density (OD600) data of Aspergillus fumigatus growth (filamentous fungus). Our method accounts for OD600 being an indirect measure by explicitly including the relationship between the indirect OD600 measurements and the calibrating true fungal growth in the model. Therefore, the method does not require de novo generation of calibration data. Our model outperformed reference models at fitting to and predicting OD600 growth curves and overcame observed discrepancies between morphology-specific rates inferred from OD600 versus directly measured data in reference models that did not include calibration.

Funder

Wellcome Trust

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Medical Research Council Centre for Medical Mycology

Medical Research Council

Biotechnology and Biological Sciences Research Council

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3