Venus: An efficient virus infection detection and fusion site discovery method using single-cell and bulk RNA-seq data

Author:

Lee Che YuORCID,Chen Yuhang,Duan ZihengORCID,Xu MinORCID,Girgenti Matthew J.ORCID,Xu Ke,Gerstein Mark,Zhang JingORCID

Abstract

Early and accurate detection of viruses in clinical and environmental samples is essential for effective public healthcare, treatment, and therapeutics. While PCR detects potential pathogens with high sensitivity, it is difficult to scale and requires knowledge of the exact sequence of the pathogen. With the advent of next-gen single-cell sequencing, it is now possible to scrutinize viral transcriptomics at the finest possible resolution–cells. This newfound ability to investigate individual cells opens new avenues to understand viral pathophysiology with unprecedented resolution. To leverage this ability, we propose an efficient and accurate computational pipeline, named Venus, for virus detection and integration site discovery in both single-cell and bulk-tissue RNA-seq data. Specifically, Venus addresses two main questions: whether a tissue/cell type is infected by viruses or a virus of interest? And if infected, whether and where has the virus inserted itself into the human genome? Our analysis can be broken into two parts–validation and discovery. Firstly, for validation, we applied Venus on well-studied viral datasets, such as HBV- hepatocellular carcinoma and HIV-infection treated with antiretroviral therapy. Secondly, for discovery, we analyzed datasets such as HIV-infected neurological patients and deeply sequenced T-cells. We detected viral transcripts in the novel target of the brain and high-confidence integration sites in immune cells. In conclusion, here we describe Venus, a publicly available software which we believe will be a valuable virus investigation tool for the scientific community at large.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3