Bayesian clustering with uncertain data

Author:

Nicholls KathORCID,Kirk Paul D. W.ORCID,Wallace ChrisORCID

Abstract

Clustering is widely used in bioinformatics and many other fields, with applications from exploratory analysis to prediction. Many types of data have associated uncertainty or measurement error, but this is rarely used to inform the clustering. We present Dirichlet Process Mixtures with Uncertainty (DPMUnc), an extension of a Bayesian nonparametric clustering algorithm which makes use of the uncertainty associated with data points. We show that DPMUnc out-performs existing methods on simulated data. We cluster immune-mediated diseases (IMD) using GWAS summary statistics, which have uncertainty linked with the sample size of the study. DPMUnc separates autoimmune from autoinflammatory diseases and isolates other subgroups such as adult-onset arthritis. We additionally consider how DPMUnc can be used to cluster gene expression datasets that have been summarised using gene signatures. We first introduce a novel procedure for generating a summary of a gene signature on a dataset different to the one where it was discovered, which incorporates a measure of the variability in expression across signature genes within each individual. We summarise three public gene expression datasets containing patients with a range of IMD, using three relevant gene signatures. We find association between disease and the clusters returned by DPMUnc, with clustering structure replicated across the datasets. The significance of this work is two-fold. Firstly, we demonstrate that when data has associated uncertainty, this uncertainty should be used to inform clustering and we present a method which does this, DPMUnc. Secondly, we present a procedure for using gene signatures in datasets other than where they were originally defined. We show the value of this procedure by summarising gene expression data from patients with immune-mediated diseases using relevant gene signatures, and clustering these patients using DPMUnc.

Funder

Wellcome Trust

Medical Research Council

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3