Amino acid sequence assignment from single molecule peptide sequencing data using a two-stage classifier
-
Published:2023-05-30
Issue:5
Volume:19
Page:e1011157
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Smith Matthew BeauregardORCID,
Simpson Zack Booth,
Marcotte Edward M.ORCID
Abstract
We present a machine learning-based interpretive framework (whatprot) for analyzing single molecule protein sequencing data produced by fluorosequencing, a recently developed proteomics technology that determines sparse amino acid sequences for many individual peptide molecules in a highly parallelized fashion. Whatprot uses Hidden Markov Models (HMMs) to represent the states of each peptide undergoing the various chemical processes during fluorosequencing, and applies these in a Bayesian classifier, in combination with pre-filtering by a k-Nearest Neighbors (kNN) classifier trained on large volumes of simulated fluorosequencing data. We have found that by combining the HMM based Bayesian classifier with the kNN pre-filter, we are able to retain the benefits of both, achieving both tractable runtimes and acceptable precision and recall for identifying peptides and their parent proteins from complex mixtures, outperforming the capabilities of either classifier on its own. Whatprot’s hybrid kNN-HMM approach enables the efficient interpretation of fluorosequencing data using a full proteome reference database and should now also enable improved sequencing error rate estimates.
Funder
Computational Sciences, Engineering, and Mathematics graduate program fellowship from the Oden Institute at the University of Texas at Austin
Erisyon Inc.
National Institute of General Medical Sciences
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Welch Foundation
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献