Compressive instabilities enable cell-induced extreme densification patterns in the fibrous extracellular matrix: Discrete model predictions

Author:

Kalaitzidou ChrysovalantouORCID,Grekas Georgios,Zilian Andreas,Makridakis Charalambos,Rosakis Phoebus

Abstract

We present a new model and extensive computations that explain the dramatic remodelling undergone by a fibrous collagen extracellular matrix (ECM), when subjected to contractile mechanical forces from embedded cells or cell clusters. This remodelling creates complex patterns, comprising multiple narrow localised bands of severe densification and fiber alignment, extending far into the ECM, often joining distant cells or cell clusters (such as tumours). Most previous models cannot capture this behaviour, as they assume stable mechanical fiber response with stress an increasing function of fiber stretch, and a restriction to small displacements. Our fully nonlinear network model distinguishes between two types of single-fiber nonlinearity: fibers that undergo stable (supercritical) buckling (as in previous work) versus fibers that suffer unstable (subcritical) buckling collapse. The model allows unrestricted, arbitrarily large displacements (geometric nonlinearity). Our assumptions on single-fiber instability are supported by recent simulations and experiments on buckling of individual beams with a hierarchical microstructure, such as collagen fibers. We use simple scenarios to illustrate, for the first time, two distinct compressive-instability mechanisms at work in our model: unstable buckling collapse of single fibers, and snap-through of multiple-fiber groups. The latter is possible even when single fibers are stable. Through simulations of large fiber networks, we show how these instabilities lead to spatially extended patterns of densification, fiber alignment and ECM remodelling induced by cell contraction. Our model is simple, but describes a very complex, multi-stable energy landscape, using sophisticated numerical optimisation methods that overcome the difficulties caused by instabilities in large systems. Our work opens up new ways of understanding the unique biomechanics of fibrous-network ECM, by fully accounting for nonlinearity and associated loss of stability in fiber networks. Our results provide new insights on tumour invasion and metastasis.

Funder

Fonds National de la Recherche Luxembourg

Office of the Under Secretary of Defense for Research and Engineering

Publisher

Public Library of Science (PLoS)

Reference71 articles.

1. Extracellular Matrix Degradation and Remodeling in Development and Disease;P Lu;Cold Spring Harbor Perspectives in Biology,2011

2. Concepts of extracellular matrix remodelling in tumour progression and metastasis;J Winkler;Nature Communications,2020

3. Tissue Cells Feel and Respond to the Stiffness of Their Substrate;DE Discher;Science,2005

4. The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function;SR Peyton;Cell Biochemistry and Biophysics,2007

5. Cell movement is guided by the rigidity of the substrate;CM Lo;Biophysical Journal,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3