Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling

Author:

Kolbe NiklasORCID,Hexemer LorenzORCID,Bammert Lukas-MalteORCID,Loewer AlexanderORCID,Lukáčová-Medvid’ová Mária,Legewie Stefan

Abstract

Cells sense their surrounding by employing intracellular signaling pathways that transmit hormonal signals from the cell membrane to the nucleus. TGF-β/SMAD signaling encodes various cell fates, controls tissue homeostasis and is deregulated in diseases such as cancer. The pathway shows strong heterogeneity at the single-cell level, but quantitative insights into mechanisms underlying fluctuations at various time scales are still missing, partly due to inefficiency in the calibration of stochastic models that mechanistically describe signaling processes. In this work we analyze single-cell TGF-β/SMAD signaling and show that it exhibits temporal stochastic bursts which are dose-dependent and whose number and magnitude correlate with cell migration. We propose a stochastic modeling approach to mechanistically describe these pathway fluctuations with high computational efficiency. Employing high-order numerical integration and fitting to burst statistics we enable efficient quantitative parameter estimation and discriminate models that assume noise in different reactions at the receptor level. This modeling approach suggests that stochasticity in the internalization of TGF-β receptors into endosomes plays a key role in the observed temporal bursting. Further, the model predicts the single-cell dynamics of TGF-β/SMAD signaling in untested conditions, e.g., successfully reflects memory effects of signaling noise and cellular sensitivity towards repeated stimulation. Taken together, our computational framework based on burst analysis, noise modeling and path computation scheme is a suitable tool for the data-based modeling of complex signaling pathways, capable of identifying the source of temporal noise.

Funder

Japan Society for the Promotion of Science

Deutsche Forschungsgemeinschaft

Mainz Institute of Multiscale Modeling

Gutenberg Forschungskolleg

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3