Two modes of fusogenic action for influenza virus fusion peptide

Author:

Michalski MichalORCID,Setny PiotrORCID

Abstract

The entry of influenza virus into the host cell requires fusion of its lipid envelope with the host membrane. It is catalysed by viral hemagglutinin protein, whose fragments called fusion peptides become inserted into the target bilayer and initiate its merging with the viral membrane. Isolated fusion peptides are already capable of inducing lipid mixing between liposomes. Years of studies indicate that upon membrane binding they form bend helical structure whose degree of opening fluctuates between tightly closed hairpin and an extended boomerang. The actual way in which they initiate fusion remains elusive. In this work we employ atomistic simulations of wild type and fusion inactive W14A mutant of influenza fusion peptides confined between two closely apposed lipid bilayers. We characterise peptide induced membrane perturbation and determine the potential of mean force for the formation of the first fusion intermediate, an interbilayer lipid bridge called stalk. Our results demonstrate two routes through which the peptides can lower free energy barrier towards fusion. The first one assumes peptides capability to adopt transmembrane configuration which subsequently promotes the creation of a stalk-hole complex. The second involves surface bound peptide configuration and proceeds owing to its ability to stabilise stalk by fitting into the region of extreme negative membrane curvature resulting from its formation. In both cases, the active peptide conformation corresponds to tight helical hairpin, whereas extended boomerang geometry appears to be unable to provide favourable thermodynamic effect. The latter observation offers plausible explanation for long known inactivity of boomerang-stabilising W14A mutation.

Funder

Narodowe Centrum Nauki

Interdyscyplinarne Centrum Modelowania Matematycznego i Komputerowego UW

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3