High rifampicin peak plasma concentrations accelerate the slow phase of bacterial decline in tuberculosis patients: Evidence for heteroresistance

Author:

Martinecz AntalORCID,Boeree Martin J.,Diacon Andreas H.,Dawson Rodney,Hemez Colin,Aarnoutse Rob E.,Abel zur Wiesch PiaORCID

Abstract

Background Antibiotic treatments are often associated with a late slowdown in bacterial killing. This separates the killing of bacteria into at least two distinct phases: a quick phase followed by a slower phase, the latter of which is linked to treatment success. Current mechanistic explanations for the in vitro slowdown are either antibiotic persistence or heteroresistance. Persistence is defined as the switching back and forth between susceptible and non-susceptible states, while heteroresistance is defined as the coexistence of bacteria with heterogeneous susceptibilities. Both are also thought to cause a slowdown in the decline of bacterial populations in patients and therefore complicate and prolong antibiotic treatments. Reduced bacterial death rates over time are also observed within tuberculosis patients, yet the mechanistic reasons for this are unknown and therefore the strategies to mitigate them are also unknown. Methods and findings We analyse a dose ranging trial for rifampicin in tuberculosis patients and show that there is a slowdown in the decline of bacteria. We show that the late phase of bacterial killing depends more on the peak drug concentrations than the total drug exposure. We compare these to pharmacokinetic-pharmacodynamic models of rifampicin heteroresistance and persistence. We find that the observation on the slow phase’s dependence on pharmacokinetic measures, specifically peak concentrations are only compatible with models of heteroresistance and incompatible with models of persistence. The quantitative agreement between heteroresistance models and observations is very good (Radj2=0.97). To corroborate the importance of the slowdown, we validate our results by estimating the time to sputum culture conversion and compare the results to a different dose ranging trial. Conclusions Our findings indicate that higher doses, specifically higher peak concentrations may be used to optimize rifampicin treatments by accelerating bacterial killing in the slow phase. It adds to the growing body of literature supporting higher rifampicin doses for shortening tuberculosis treatments.

Funder

European and Developing Countries Clinical Trials Partnership

Norges Forskningsråd

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3