Accelerating joint species distribution modelling with Hmsc-HPC by GPU porting

Author:

Rahman Anis UrORCID,Tikhonov GlebORCID,Oksanen Jari,Rossi TuomasORCID,Ovaskainen OtsoORCID

Abstract

Joint species distribution modelling (JSDM) is a widely used statistical method that analyzes combined patterns of all species in a community, linking empirical data to ecological theory and enhancing community-wide prediction tasks. However, fitting JSDMs to large datasets is often computationally demanding and time-consuming. Recent studies have introduced new statistical and machine learning techniques to provide more scalable fitting algorithms, but extending these to complex JSDM structures that account for spatial dependencies or multi-level sampling designs remains challenging. In this study, we aim to enhance JSDM scalability by leveraging high-performance computing (HPC) resources for an existing fitting method. Our work focuses on the Hmsc R-package, a widely used JSDM framework that supports the integration of various dataset types into a single comprehensive model. We developed a GPU-compatible implementation of its model-fitting algorithm using Python and the TensorFlow library. Despite these changes, our enhanced framework retains the original user interface of the Hmsc R-package. We evaluated the performance of the proposed implementation across various model configurations and dataset sizes. Our results show a significant increase in model fitting speed for most models compared to the baseline Hmsc R-package. For the largest datasets, we achieved speed-ups of over 1000 times, demonstrating the substantial potential of GPU porting for previously CPU-bound JSDM software. This advancement opens promising opportunities for better utilizing the rapidly accumulating new biodiversity data resources for inference and prediction.

Funder

Academy of Finland

European Research Council

Publisher

Public Library of Science (PLoS)

Reference36 articles.

1. Novel community data in ecology—properties and prospects;F Hartig;Trends in Ecology and Evolution,2023

2. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM);LJ Pollock;Methods in Ecology and Evolution,2014

3. So Many Variables: Joint Modeling in Community Ecology;DI Warton;Trends in Ecology and Evolution,2015

4. Identifying biotic interactions which drive the spatial distribution of a mosquito community;N Golding;Parasites & vectors,2015

5. boral: Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R;FKC Hui;Methods in Ecology and Evolution,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3