Bounded rational decision-making models suggest capacity-limited concurrent motor planning in human posterior parietal and frontal cortex

Author:

Schach SonjaORCID,Lindner AxelORCID,Braun Daniel AlexanderORCID

Abstract

While traditional theories of sensorimotor processing have often assumed a serial decision-making pipeline, more recent approaches have suggested that multiple actions may be planned concurrently and vie for execution. Evidence for the latter almost exclusively stems from electrophysiological studies in posterior parietal and premotor cortex of monkeys. Here we study concurrent prospective motor planning in humans by recording functional magnetic resonance imaging (fMRI) during a delayed response task engaging movement sequences towards multiple potential targets. We find that also in human posterior parietal and premotor cortex delay activity modulates both with sequence complexity and the number of potential targets. We tested the hypothesis that this modulation is best explained by concurrent prospective planning as opposed to the mere maintenance of potential targets in memory. We devise a bounded rationality model with information constraints that optimally assigns information resources for planning and memory for this task and determine predicted information profiles according to the two hypotheses. When regressing delay activity on these model predictions, we find that the concurrent prospective planning strategy provides a significantly better explanation of the fMRI-signal modulations. Moreover, we find that concurrent prospective planning is more costly and thus limited for most subjects, as expressed by the best fitting information capacities. We conclude that bounded rational decision-making models allow relating both behavior and neural representations to utilitarian task descriptions based on bounded optimal information-processing assumptions.

Funder

H2020 European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3