Implications of differential size-scaling of cell-cycle regulators on cell size homeostasis
-
Published:2023-07-28
Issue:7
Volume:19
Page:e1011336
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Ji XiangruiORCID,
Lin JieORCID
Abstract
Accurate timing of division and size homeostasis is crucial for cells. A potential mechanism for cells to decide the timing of division is the differential scaling of regulatory protein copy numbers with cell size. However, it remains unclear whether such a mechanism can lead to robust growth and division, and how the scaling behaviors of regulatory proteins influence the cell size distribution. Here we study a mathematical model combining gene expression and cell growth, in which the cell-cycle activators scale superlinearly with cell size while the inhibitors scale sublinearly. The cell divides once the ratio of their concentrations reaches a threshold value. We find that the cell can robustly grow and divide within a finite range of the threshold value with the cell size proportional to the ploidy. In a stochastic version of the model, the cell size at division is uncorrelated with that at birth. Also, the more differential the cell-size scaling of the cell-cycle regulators is, the narrower the cell-size distribution is. Intriguingly, our model with multiple regulators rationalizes the observation that after the deletion of a single regulator, the coefficient of variation of cell size remains roughly the same though the average cell size changes significantly. Our work reveals that the differential scaling of cell-cycle regulators provides a robust mechanism of cell size control.
Funder
National Key R&D Program of China
Peking-Tsinghua Center for Life Sciences
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Influence of cell volume on the gene transcription rate;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2024-03