Investigating the ability of astrocytes to drive neural network synchrony

Author:

Handy GregoryORCID,Borisyuk AllaORCID

Abstract

Recent experimental works have implicated astrocytes as a significant cell type underlying several neuronal processes in the mammalian brain, from encoding sensory information to neurological disorders. Despite this progress, it is still unclear how astrocytes are communicating with and driving their neuronal neighbors. While previous computational modeling works have helped propose mechanisms responsible for driving these interactions, they have primarily focused on interactions at the synaptic level, with microscale models of calcium dynamics and neurotransmitter diffusion. Since it is computationally infeasible to include the intricate microscale details in a network-scale model, little computational work has been done to understand how astrocytes may be influencing spiking patterns and synchronization of large networks. We overcome this issue by first developing an “effective” astrocyte that can be easily implemented to already established network frameworks. We do this by showing that the astrocyte proximity to a synapse makes synaptic transmission faster, weaker, and less reliable. Thus, our “effective” astrocytes can be incorporated by considering heterogeneous synaptic time constants, which are parametrized only by the degree of astrocytic proximity at that synapse. We then apply our framework to large networks of exponential integrate-and-fire neurons with various spatial structures. Depending on key parameters, such as the number of synapses ensheathed and the strength of this ensheathment, we show that astrocytes can push the network to a synchronous state and exhibit spatially correlated patterns.

Funder

The Swartz Foundation

Burroughs Wellcome Fund

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference66 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3