Data-dependent visualization of biological networks in the web-browser with NDExEdit

Author:

Auer FlorianORCID,Mayer SimoneORCID,Kramer FrankORCID

Abstract

Networks are a common methodology used to capture increasingly complex associations between biological entities. They serve as a resource of biological knowledge for bioinformatics analyses, and also comprise the subsequent results. However, the interpretation of biological networks is challenging and requires suitable visualizations dependent on the contained information. The most prominent software in the field for the visualization of biological networks is Cytoscape, a desktop modeling environment also including many features for analysis.A further challenge when working with networks is their distribution. Within a typical collaborative workflow, even slight changes of the network data force one to repeat the visualization step as well. Also, just minor adjustments to the visual representation not only need the networks to be transferred back and forth. Collaboration on the same resources requires specific infrastructure to avoid redundancies, or worse, the corruption of the data. A well-established solution is provided by the NDEx platform where users can upload a network, share it with selected colleagues or make it publicly available.NDExEdit is a web-based application where simple changes can be made to biological networks within the browser, and which does not require installation. With our tool, plain networks can be enhanced easily for further usage in presentations and publications. Since the network data is only stored locally within the web browser, users can edit their private networks without concerns of unintentional publication. The web tool is designed to conform to the Cytoscape Exchange (CX) format as a data model, which is used for the data transmission by both tools, Cytoscape and NDEx. Therefore the modified network can be directly exported to the NDEx platform or saved as a compatible CX file, additionally to standard image formats like PNG and JPEG.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference19 articles.

1. Leveraging models of cell regulation and GWAS data in integrative network-based association studies;A Califano;Nature Genetics,2012

2. Bridging topological and functional information in protein interaction networks by short loops profiling;SS Chung;Scientific Reports,2015

3. Systems Bioinformatics: increasing precision of computational diagnostics and therapeutics through network-based approaches;A Oulas;Briefings in Bioinformatics,2017

4. Methods for biological data integration: perspectives and challenges;V Gligorijević;Journal of The Royal Society Interface,2015

5. Visualizing genome and systems biology: technologies, tools, implementation techniques and trends, past, present and future;GA Pavlopoulos;GigaScience,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3