Metabolic modeling of sex-specific liver tissue suggests mechanism of differences in toxicological responses

Author:

Moore Connor J.ORCID,Holstege Christopher P.,Papin Jason A.ORCID

Abstract

Male subjects in animal and human studies are disproportionately used for toxicological testing. This discrepancy is evidenced in clinical medicine where females are more likely than males to experience liver-related adverse events in response to xenobiotics. While previous work has shown gene expression differences between the sexes, there is a lack of systems-level approaches to understand the direct clinical impact of these differences. Here, we integrate gene expression data with metabolic network models to characterize the impact of transcriptional changes of metabolic genes in the context of sex differences and drug treatment. We used Tasks Inferred from Differential Expression (TIDEs), a reaction-centric approach to analyzing differences in gene expression, to discover that several metabolic pathways exhibit sex differences including glycolysis, fatty acid metabolism, nucleotide metabolism, and xenobiotics metabolism. When TIDEs is used to compare expression differences in treated and untreated hepatocytes, we find several subsystems with differential expression overlap with the sex-altered pathways such as fatty acid metabolism, purine and pyrimidine metabolism, and xenobiotics metabolism. Finally, using sex-specific transcriptomic data, we create individual and averaged male and female liver models and find differences in the pentose phosphate pathway and other metabolic pathways. These results suggest potential sex differences in the contribution of the pentose phosphate pathway to oxidative stress, and we recommend further research into how these reactions respond to hepatotoxic pharmaceuticals.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3