A computational modeling approach for predicting multicell spheroid patterns based on signaling-induced differential adhesion

Author:

Sivakumar NikitaORCID,Warner Helen V.ORCID,Peirce Shayn M.ORCID,Lazzara Matthew J.ORCID

Abstract

Physiological and pathological processes including embryogenesis and tumorigenesis rely on the ability of individual cells to work collectively to form multicell patterns. In these heterogeneous multicell systems, cell-cell signaling induces differential adhesion between cells that leads to tissue-level patterning. However, the sensitivity of pattern formation to changes in the strengths of signaling or cell adhesion processes is not well understood. Prior work has explored these issues using synthetically engineered heterogeneous multicell spheroid systems, in which cell subpopulations engage in bidirectional intercellular signaling to regulate the expression of different cadherins. While engineered cell systems provide excellent experimental tools to observe pattern formation in cell populations, computational models of these systems may be leveraged to explore more systematically how specific combinations of signaling and adhesion parameters can drive the emergence of unique patterns. We developed and validated two- and three-dimensional agent-based models (ABMs) of spheroid patterning for previously described cells engineered with a bidirectional signaling circuit that regulates N- and P-cadherin expression. Systematic exploration of model predictions, some of which were experimentally validated, revealed how cell seeding parameters, the order of signaling events, probabilities of induced cadherin expression, and homotypic adhesion strengths affect pattern formation. Unsupervised clustering was also used to map combinations of signaling and adhesion parameters to these unique spheroid patterns predicted by the ABM. Finally, we demonstrated how the model may be deployed to design new synthetic cell signaling circuits based on a desired final multicell pattern.

Funder

National Science Foundation

University of Virginia Center for Engineering in Medicine

University of Virginia Center for Advanced Biomanufacturing

Arnold and Mabel Beckman Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3