Abstract
According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones–more likely depression, upbound microzones—more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Funder
Horizon 2020 Framework Programme
Ministero dell'Università e della Ricerca
Nederlandse Organisatie voor Wetenschappelijk Onderzoek
ZonMw
Medical Neuro-Delta
LSH NWO
European Research Council
NIN Vriendenfonds for Albinism
NWO-Gravitation
Publisher
Public Library of Science (PLoS)
Reference108 articles.
1. Motor learning and the cerebellum.;CI De Zeeuw;Cold Spring Harb Perspect Biol.,2015
2. Mechanisms of motor learning in the cerebellum;M. Ito;Brain Res,2000
3. The Cerebellum as a Neuronal Machine
4. Cerebellar learning mechanisms;JH Freeman;Brain Res,2014
5. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace;D-A Jirenhed;The Journal of neuroscience,2007
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献