TFOFinder: Python program for identifying purine-only double-stranded stretches in the predicted secondary structure(s) of RNA targets

Author:

Neugroschl Atara,Catrina Irina E.ORCID

Abstract

Nucleic acid probes are valuable tools in biology and chemistry and are indispensable for PCR amplification of DNA, RNA quantification and visualization, and downregulation of gene expression. Recently, triplex-forming oligonucleotides (TFO) have received increased attention due to their improved selectivity and sensitivity in recognizing purine-rich double-stranded RNA regions at physiological pH by incorporating backbone and base modifications. For example, triplex-forming peptide nucleic acid (PNA) oligomers have been used for imaging a structured RNA in cells and inhibiting influenza A replication. Although a handful of programs are available to identify triplex target sites (TTS) in DNA, none are available that find such regions in structured RNAs. Here, we describe TFOFinder, a Python program that facilitates the identification of intramolecular purine-only RNA duplexes that are amenable to forming parallel triple helices (pyrimidine/purine/pyrimidine) and the design of the corresponding TFO(s). We performed genome- and transcriptome-wide analyses of TTS in Drosophila melanogaster and found that only 0.3% (123) of total unique transcripts (35,642) show the potential of forming 12-purine long triplex forming sites that contain at least one guanine. Using minimization algorithms, we predicted the secondary structure(s) of these transcripts, and using TFOFinder, we found that 97 (79%) of the identified 123 transcripts are predicted to fold to form at least one TTS for parallel triple helix formation. The number of transcripts with potential purine TTS increases when the strict search conditions are relaxed by decreasing the length of the probe or by allowing up to two pyrimidine inversions or 1-nucleotide bulge in the target site. These results are encouraging for the use of modified triplex forming probes for live imaging of endogenous structured RNA targets, such as pre-miRNAs, and inhibition of target-specific translation and viral replication.

Funder

Yeshiva University

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3