Using smartphone-GPS data to quantify human activity in green spaces

Author:

Filazzola AlessandroORCID,Xie GarlandORCID,Barrett Kimberly,Dunn Andrea,Johnson Marc T. J.,MacIvor James ScottORCID

Abstract

Cities are growing in density and coverage globally, increasing the value of green spaces for human health and well-being. Understanding the interactions between people and green spaces is also critical for biological conservation and sustainable development. However, quantifying green space use is particularly challenging. We used an activity index of anonymized GPS data from smart devices provided by Mapbox (www.mapbox.com) to characterize human activity in green spaces in the Greater Toronto Area, Canada. The goals of our study were to describe i) a methodological example of how anonymized GPS data could be used for human-nature research and ii) associations between park features and human activity. We describe some of the challenges and solutions with using this activity index, especially in the context of green spaces and biodiversity monitoring. We found the activity index was strongly correlated with visitation records (i.e., park reservations) and that these data are useful to identify high or low-usage areas within green spaces. Parks with a more extensive trail network typically experienced higher visitation rates and a substantial proportion of activity remained on trails. We identified certain land covers that were more frequently associated with human presence, such as rock formations, and find a relationship between human activity and tree composition. Our study demonstrates that anonymized GPS data from smart devices are a powerful tool for spatially quantifying human activity in green spaces. These could help to minimize trade-offs in the management of green spaces for human use and biological conservation will continue to be a significant challenge over the coming decades because of accelerating urbanization coupled with population growth. Importantly, we include a series of recommendations when using activity indexes for managing green spaces that can assist with biomonitoring and supporting sustainable human use.

Funder

The Center for Urban Environments and School of Cities

Ontario Graduate Scholarship

Center for Environmental Research in the Anthropocene Graduate Fellowship

NSERC CREATE

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference62 articles.

1. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview;K Riahi;Glob Environ Chang,2017

2. Transforming our world: the 2030;U. Nations;Agenda for Sustainable Development,2015

3. Are urban systems beneficial, detrimental, or indifferent for biological invasion;MW Cadotte;Biol Invasions,2017

4. Invasion, Competition, and Biodiversity Loss in Urban Ecosystems;E Shochat;Bioscience,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3