Reliable ligand discrimination in stochastic multistep kinetic proofreading: First passage time vs. product counting strategies

Author:

Li XiangtingORCID,Chou TomORCID

Abstract

Cellular signaling, crucial for biological processes like immune response and homeostasis, relies on specificity and fidelity in signal transduction to accurately respond to stimuli amidst biological noise. Kinetic proofreading (KPR) is a key mechanism enhancing signaling specificity through time-delayed steps, although its effectiveness is debated due to intrinsic noise potentially reducing signal fidelity. In this study, we reformulate the theory of kinetic proofreading (KPR) by convolving multiple intermediate states into a single state and then define an overall “processing” time required to traverse these states. This simplification allows us to succinctly describe kinetic proofreading in terms of a single waiting time parameter, facilitating a more direct evaluation and comparison of KPR performance across different biological contexts such as DNA replication and T cell receptor (TCR) signaling. We find that loss of fidelity for longer proofreading steps relies on the specific strategy of information extraction and show that in the first-passage time (FPT) discrimination strategy, longer proofreading steps can exponentially improve the accuracy of KPR at the cost of speed. Thus, KPR can still be an effective discrimination mechanism in the high noise regime. However, in a product concentration-based discrimination strategy, longer proofreading steps do not necessarily lead to an increase in performance. However, by introducing activation thresholds on product concentrations, can we decompose the product-based strategy into a series of FPT-based strategies to better resolve the subtleties of KPR-mediated product discrimination. Our findings underscore the importance of understanding KPR in the context of how information is extracted and processed in the cell.

Publisher

Public Library of Science (PLoS)

Reference39 articles.

1. Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity;JJ Hopfield;Proceedings of the National Academy of Sciences,1974

2. On Some Principles Governing Molecular Evolution;M Kimura;Proceedings of the National Academy of Sciences,1974

3. Comparison between DNA melting thermodynamics and DNA polymerase fidelity;J Petruska;Proceedings of the National Academy of Sciences,1988

4. Neoantigen-Reactive T Cells: The Driving Force behind Successful Melanoma Immunotherapy;L Davis;Cancers,2021

5. Kinetic amplification of enzyme discrimination;J Ninio;Biochimie,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3