Surround suppression in mouse auditory cortex underlies auditory edge detection

Author:

Gilday Omri David,Praegel Benedikt,Maor Ido,Cohen Tav,Nelken IsraelORCID,Mizrahi AdiORCID

Abstract

Surround suppression (SS) is a fundamental property of sensory processing throughout the brain. In the auditory system, the early processing stream encodes sounds using a one dimensional physical space—frequency. Previous studies in the auditory system have shown SS to manifest as bandwidth tuning around the preferred frequency. We asked whether bandwidth tuning can be found around frequencies away from the preferred frequency. We exploited the simplicity of spectral representation of sounds to study SS by manipulating both sound frequency and bandwidth. We recorded single unit spiking activity from the auditory cortex (ACx) of awake mice in response to an array of broadband stimuli with varying central frequencies and bandwidths. Our recordings revealed that a significant portion of neuronal response profiles had a preferred bandwidth that varied in a regular way with the sound’s central frequency. To gain insight into the possible mechanism underlying these responses, we modelled neuronal activity using a variation of the “Mexican hat” function often used to model SS. The model accounted for response properties of single neurons with high accuracy. Our data and model show that these responses in ACx obey simple rules resulting from the presence of lateral inhibitory sidebands, mostly above the excitatory band of the neuron, that result in sensitivity to the location of top frequency edges, invariant to other spectral attributes. Our work offers a simple explanation for auditory edge detection and possibly other computations of spectral content in sounds.

Funder

H2020 European Research Council

Israeli science foundation

Gatsby Charitable Foundation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3