Dorsal and median raphe neuronal firing dynamics characterized by nonlinear measures

Author:

Pascovich ClaudiaORCID,Serantes Diego,Rodriguez Alejo,Mateos Diego,González JoaquínORCID,Gallo Diego,Rivas Mayda,Devera Andrea,Lagos Patricia,Rubido NicolásORCID,Torterolo Pablo

Abstract

The dorsal (DRN) and median (MRN) raphe are important nuclei involved in similar functions, including mood and sleep, but playing distinct roles. These nuclei have a different composition of neuronal types and set of neuronal connections, which among other factors, determine their neuronal dynamics. Most works characterize the neuronal dynamics using classic measures, such as using the average spiking frequency (FR), the coefficient of variation (CV), and action potential duration (APD). In the current study, to refine the characterization of neuronal firing profiles, we examined the neurons within the raphe nuclei. Through the utilization of nonlinear measures, our objective was to discern the redundancy and complementarity of these measures, particularly in comparison with classic methods. To do this, we analyzed the neuronal basal firing profile in both nuclei of urethane-anesthetized rats using the Shannon entropy (Bins Entropy) of the inter-spike intervals, permutation entropy of ordinal patterns (OP Entropy), and Permutation Lempel-Ziv Complexity (PLZC). Firstly, we found that classic (i.e., FR, CV, and APD) and nonlinear measures fail to distinguish between the dynamics of DRN and MRN neurons, except for the OP Entropy. We also found strong relationships between measures, including the CV with FR, CV with Bins entropy, and FR with PLZC, which imply redundant information. However, APD and OP Entropy have either a weak or no relationship with the rest of the measures tested, suggesting that they provide complementary information to the characterization of the neuronal firing profiles. Secondly, we studied how these measures are affected by the oscillatory properties of the firing patterns, including rhythmicity, bursting patterns, and clock-like behavior. We found that all measures are sensitive to rhythmicity, except for the OP Entropy. Overall, our work highlights OP Entropy as a powerful and useful quantity for the characterization of neuronal discharge patterns.

Funder

“Programa de Desarrollo de Ciencias Básicas, PEDECIBA

Comisión Sectorial de Investigación Científica

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3